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_ _ABSTRACT

wind turbine with a two-bladed teetering rotor.
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INTRODUCTION

o Recent horizontal-axis wind turbine (HAWT)
designs such as the DOE/NASA Mod-2 wind turbine
{ref. 1} incluge flexible towers in order to
e achieva significant weight and cost reductions.
Experisnce with prop-rotors has shown that rotors
Z with flexible supports have a potential

_ . aeroelastic instability known as whirl flutter,

This form of instability iInvolves the interaction

of elastic, damping, gyroscopic, and aerodynamic

- forces. The whirl flutter problem is discussed

= . o -w===in references 2-7 among others. In whirl

- instapility, the rotor will precess in a whirl

_ ~"mode with an ever-increasing amplitude when the

gritical wind speed has been reached. That is, a

point on the rotor hub will trace a divergent

- spiral as illustrated in Figure 1., The direction
co of_the spiral rotation can be either the same as,

or counter to, the rotor rotation., These two

- modes are referred to as forward and backward

whirl modes, respectively. Continued operation

of a wind turbine in the whirl flutter

hub
__motion

Figure 1. - Wind Turbine Rotor in a Forward whirl
Mode.

7 77 An Investigation to explore the possibility of whirl flutter and to find the effect of piten-flap
__cowpling {83) on teetering motion of the DOE/NASA Mod-2 wind turbinme is presented.
~~motion are derived for an idealized five-degree-of-freedom mathematical model of a horizontal-axis
The model accounts for the out- of—plane bending
? .each blade, the teetering motion of the rotor, and both the pitehing and yawing motions of
Results show that the Mod-2 design is free from whirl flutter.
zsented indicating the effect of variations in rotor support damping, rotor support stiffness,

The equations of

Selected results

““gnd 83 on pitching, yawing, teetering, and blade bending motions,

mode will quickly lead to failure of the
supportive structure. This whirl instability is
possible regardless of the presence of rotor
teetering motions or blade out-of-plane bending
motions,  When these motions are included, they
couple with the motions of the supportive
structure. Then a whirl instability can occur in

the whirl modes of the supportive structure
and/or the rotor.

Most of the current large HAWT systems have
rotors with two blades. The analysis of wind
turbines with two-bladed rotors differs
signifiééﬁfl&”?fﬁm"fhéf'wlth”éii mmetric
rotors.~The properties of a two-bladed wind

‘turbine change significantly as the blades rotate

from a horizontal to a vertical pesition. As a

result, the equations of motion of a two-bladed

wind turbine system contain significant periedic
coefficients.

In order to reduce blade bending loads, teetered
rotors with pitch-flap coupling (83) have been
used in some HAWT systems, The pitch-flap
coupling mechanically changes the pitch of the
blades as the rotor Teeters and thus is
equivalent to an aerodynamic spring that
restrains teetering motion., The effect of &3

on rotor motion stability was studied in refs. 6
and 8. A whirl flutter analysis for a prop-rotor
on a flexibly mounted pylon was developed in ref.
6. That analysis may also be suitable for
investigation of whirl flutter in HAWT systems,
However, since most HAWT systems use rotor blades
that are long and relatively flexible, the blade
flexibility ought to be included in the
formulation of a HAWT whirl flutter analysis.

Other analyses are available for the
1nvestigat10n of whirl flutter in HAWT systems.
One is the MOSTAS computer code {refs. 9 and
10). However, it is very complex and uses a
large amount of computer time. Hence, it is not
well sulted to parametric investigatioms.
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Therefore, a simple model, encompassing only the
pertinent degrees of freedom, is desired to study
the possibility of whirl flutter in a flexibly
mounted HAWT.

The primary purpose of this paper is to present
the development of a simple model for exploring
the possibility of whirl flutter in the DOE/NASA
Mod-2 HAWT. Secondary purposes are to study the
effects of pitch-flap coupling, rotor support
stiffness, and rotor support damping on the
response of the Mod-2.

A five-degree-of-freedom mathematical model is
developed in the Appendix for a flexibly-mounted
two-pladed teetering rotor. The degrees of
freedom include the first out-of-plane bending
mode for each blade, the rotor teetering motion,
the rotor support pitching motion, and the rotor
support yawing motion. The developed eguations
that have periodic coefficients are numerically
integrated in the time domain using a standard
Runge-Kutta method.

ANALYSIS METHOD
Mathematical Model

The mathematical model of a HAWT with two-bladed
teetering rotor is shown in Figure 2. The rotor
support is modeled by a rigid pylon of length h
that is restrained at one end by two sets of
rotational springs and dampers. These springs
and dampers represent tower stiffnesses and
dampings. The restraints allow only pitching and
yawing motions, ¢y and ¢y, of the pylon. The
teetering motion, Y, of the rotor hub with
respect to the rotating shaft of the pylon is
also restrained by a rotational spring and damper
set. The angular velocity, &, of the rotor is
assumed to be constant. The out-of-plane blade
bending deflections are represented by w) and
wy. These deflections are, in turn, expressed
in terms of the normal bending modes and the
generalized coordinates. Since the blades are
relatively stiff, only one mode is considered.
This type of representation of the blade motion
is referred to as a Rayleigh-type of analysis.
As a conseguence of this approximation of the
blade motion, there are three degrees of freedom
for the rotor, one for each blade, and one for

1, ;.

W,
2
Figure 2. - Mathematical Model of a Two-Bladed
Teetering HAWT.

teetering. Thus, with the pitching and yawing
motions of the pylon, the wind turbine model has
a total of five degrees of freedom. Only the
out-of-plane bending motion of the blades is
considered because it couples with the rotor
teetering motion. Consideration of other motions
such as tower translation, blade in-plane
bending, and blade torsion are not difficult, but
their inclusion would increase the complexity of
the analysis. Furthermore, it is believed that
these other motions do not have much effect on
whirl flutter.

The aerodynamic forces are obtalned from strip
theory based on a quasi-steady approximation of
two-dimensional, incompressible, thin airfoil
theory. The blade geometric pitch angle, which
consists of the blade built-in twist {pretwist),
the pitch angle due to pitch-flap coupling, the
collective pitch angle, and the cyclic pitch
angle are included in the formulation. Classical
blade element momentum theory is used to
calculate the steady induced velocity.

Coordinate Systems

Several orthogonal coordinate systems are used in
the derivation of the equations of motion., Those
that are common to both the dynamic and
aerodynamic aspects of the HAWT are described in
this section.

1. Inertial system XYZ -- The Y-axis of this
system, shown in Figure 2, coincides with the
vertical axis of the HAWT tower and is positive
ypward. The Z-axis coincides with rotor axis and
is positive into the wind.

2. Hub system X3Y3Z3 -- This system 1is
fixed to the hub center but does not rotate with
the rotor. It is parallel to the XYZ system when
the pod rotations are zero.

3. Rotor system X4Y4Zy -- This axis
system is obtained by rotating the hub system
about the Z3 axis by the rotor position angle ¥
(=Qt) as shown in Figure 2.

4. Blade system xpypzp -- This axis
system is obtainmed by rotating the rotor system
about the X4-axis by the rotor teetering
angle y. The yy axis is aligned along the
blade quarter chord points and is also assumed to
be the blade elastic axls. The x5 and zy
axes are also shown in Figure 3 along with the
various blade element angles, relative
velocities, and resultant aerodynamic forces.

b

Figure 3. - Blade Element Velocity and Force
vectors for a wind Turbine Rotor.
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Computer Code

The equations of motlon developed in the Appendix
have timewise periodic coefficients. The
stability of a HAWT must be determined by
numerically integrating these eguations or by
-using Floguet-Liapunov theory. To this end, a
computer program called ASTER5 (Aeroelastic
Stshility of a TEeterlng Rotor with 5 degrees of
‘Treedom) was written to numerically Integrate
these equations., The ASTER5 program was first
verified by several special cases obtained from
ref. 6. The program was then used to investigate
the possibility of whirl flutter in the DOE/NASA
MoC-2Z HAWT and the effect of variations in some
of the Mod-2 parameters on its response.

The ASTERS computer program was written in
FORTRAN IV. The inmput includes the radial
distributions of blade chord, twist angle, mass,
and first gut-of-plane bending mode; equivalent

% —=—= —=-...——ingrtia, stiffness, and damping constants for the

pylon and aerodynamic data. The input allows

t-span pitchable blades with pitch-flap

7upling and cyclic pitch, The program uses a
dard subroutine called DVERK, which solves a

[ )\HI |
|

= AA,Wﬂmﬁﬁfsystew of First-order differential equations with
" "a Runge-Kutta method based on Verners fifth- and

sixtn-order palr of formulas,

RESULTS AND DISCUSSION

" To verify tne ability of the ASTERS program to

corractly predict whirl flutter, several cases of
g prop-rotor, which was analyzed in ref, 6, were

______evaluated. _The parameters for the prop-rotor are
~_préssnted in Table I. Results are presented for

two typical cases. 1In one case, the prop-rotor
response exhibits whirl flutter, while in the
other case it is stable. The whirl flutter case

in which the pitching and yawing frequencies are
2.3 Hz and 5.0 Hz respectively, is shown in
figure 4. Wwhen the pitching freauency is raised
to 3.3 Hz by increasing the pitch spring

stiffness, the prop-rotor becomes stable, as

shown in Figure 5. For comparison, the envelopes
of the pitch motion amplitudes for the

corresponding cases calculated in ref, 6 are 3150
indicated in Figures 4 and 5. It is evident from
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Figure 4. - Response of Prop—Rotor in
whirl Flutter Mode.

these figures that there is agreement between the
results of ref. 6 and the ASTERS program. Thus,
the ASTERS program is capable of predicting whirl
flutter. The quantitative differences evident in
these figures may be due to differemces in
airfoil data and/or initial conditions. It
should also be noted that ref. & does not account
for the blade out-of-plane bending motions as
does ASTER5. However, the blade frequency is
assumed to be high for the input to ASTERS5, and
thus has a negligible effect on stability. The
steady state pitch deflection, ¢4, evident in
Figure 5, is due to the gravitational moment of
the rotor, which is added to the pitching moment
only for these verification cases.

4.

e ﬁ\/“ J\[A\f\/WM/\/\/\N\ WA

. envelope of Ref. §
SUPPORT
PITCHING

‘!

deg.

Al
supeort | |
'“;'G oF v Wﬁ’%{ff A
-ty
dug, f
-3

n [ 2.4 8.8 1.2 1.6 2.0 2.4 2.8 3.2 36 4.0
- TIHE, ¢, sec. T
Figure 5. - Response of Prop-Rotor in
Stable Mode.

The DOE/NASA Mod-2 HAWT was modeled to
investigate the possibility of whirl flutter.

The parameters for Mod-2 are presented in Table
II. The response of the Mod-2 was calculated
with the ASTERS program. A baseline reference
ctase of the Mod-2 parameters without structural
dampling was considered for an initial evaluation
of its stability., The results of this case,
given 1n Figure 6, show that the pitch, yaw,
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Figure 6. - Response of Mod-2 Baseline Case -
without Structural Damping.
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teeter, and blade cyclic bending motlons are
neutrally stable. However, when a small amount
of structural damping for the pitch and yaw
motions is included, all motions are damped out
as shown in Figure 7. Since damping exceeding
this amount is expected in the actual system, it
is concluded that the baseline Mod-2 is free from
whirl flutter.
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Figure 7. - Response of Mod-2 Baseline Case with
g
Structural Damping (5¢y="5¢y=.01).

To study the effect of pitch-flap coupling on the
response of the baseline Mod-2, several cases
were calculated for values of o3 from -409 to
+400, The results indicate that only the blade
cyclic bending motion as measured by ac is

af fected by varlations in 63. Figure 8 shows

the change in maximum amplitude of gc with Ss,
The results indicate that positive 83 has an
adverse effect on blade cyclic bending motion.
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BENDING ; |

'qcl max
deg.

0.1 1 i 1 1
-40. -20. 0. 20. 40.

PITCH FLAP COUPLING, &,, deg.

Figure 8. - Effect of Pitch-Flap Coupling, &,
on Blade Cyclic Out-of-Plane
Bending Motion,

Other parametric studies were made to explore the
possibility of whirl flutter over wide ranges of
pylon spring stiffnesses, pylon dampings, rotor
rotational speeds, and wind speeds. Some
selected results of these studies are presented
in Figures $-12. The possibility of whirl
flutter can exist for Mod-2 if the yaw or pitch
stiffness of the pylon were substantially
reduced. For example, Figure 9 shows the
response of Mod-2 when the yaw stiffness is
decreased to 6.6% of its baseline value while the

other parameters remain the same. These results

-indicate whirl flutter By the unstable response

of the yaw and teeter motions. When the pylon
pitch stiffness is also reduced to 7.3% of its
baseline value such that the pitch and yaw
frequencies are equal (Y¢,=%,=3.665 Hz),

then the response of the pitch motion is also
unstable as shown in Figure 10. The whirl motion
of the pylon for this case is best illustrated by
a cross-plot of the pitch and yaw motion in
Figure 11. The figure shows that the system is
in a forward whirl mode. From these results, it
can be concluded that the stability of a HAWT is

highly dependent on the rotor support stiffnesses.

As demonstrated earlier, the stability of a HAWT
is sensitive to the presence of structural
damping. To further illustrate this fact, a
nominal amount of damping (%y=50y=.04) was
added to the unstable case of Figures 10 and 11.
The results, shown in Figure 12, indicate that a
reasonable amount of structural damping has
stabilized all motions of a previously unstable
system.
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~ Figure 12.7 - Response of Mod-2 with Reduced
T Pitch and Yaw Stiffness
(w¢x=m¢y=3.665 Hz) and Structural

-~  Damping (Ygx=ty=.04).
CONCLUSIONS

An_investigation was conducted to explore the
_ possibility of whirl flutter in a large HAWT. A
—- -~ Tive degree-of-freedom mathematical model and its
associated computer program were developed and
— verified. The program was used to study the
possibility of whirl flutter in the DOE/NASA
MoG-Z wind turbine and the effect of parametric
variations in pitch-flap coupling, rotor support
stiffnesses, and structural damping on its
respcnse. Based on these limited studies, the

follewing conclusions were abtained.

|

= 1. The ASTERS program is capable of
— predicting whirl flutter for two-bladed teetering
rotor systems.

"'2. The baseline design of the Mod-2 HAWT is
free of whirl flutter.

NOMENCLATURE
C blade chord length
Ch, Cw, damping coefficients of rotor
C¢x, C¢y teetering, blade out-of-
plane bending, pylon pitch and yaw
motions, respectively
D profile drag per unit length of
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3. Positive 83 has an adverse effect on
cyclic blade out-of-plane bending motions for the
Mod-2 design, whereas negative 63 has little
effect,

4. Reduction in rotor support stiffness or
structural damping increases the possibility of
whirl flutter.
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H

Hy, H
Ib

Ipx’ Ipy
Ko

Key Ky
K¢x’ K¢y
L

My, Moy
Qcs Qs
Qwyyr Qwp
by

R

o1

t

T

T1, T2
U

Up, Ut

v

V'

W], W2
Xbs Ybs 2
X, ¥, Z
X3, Y3, I3

pylon length
total rotor shear force, Eq. (A20)

rotor shear force per unit length
of blade 1 and 2, respectively

mass moment of imertia of the blade
defined in Eq. (A9)

mass moments of inmertia of
the pylon about the X and Y axes

nalf of the teeter spring stiffness

effective blade spring stiffnesses
defined in Eq. (All)

pylon spring stiffnesses

circulatory 1lift per unit length of
blade element

mass properties of the blade
defined 1n Eq. (A9)

cyclic and symmetric coordinates
for blade out-of-plane bending
motions defined in Eq. (A9)
generalized coordinates

for out-of-plane bending motions of
blades 1 and 2

radial distance along blade elastic
axis

radial length of blade

mass property of blade defined in
Eq. (A9)

time

total rotor thrust force, Eq. (AZ0)
also kinetic energy

rotor thrust force per unit length
of blade 1 and 2

resultant aerodynamic velocity,
also potential energy

components of U, Figure 3
induced velocity
wind velocity

out-of-plane bending deflections of
blade 1 and 2

blade coordinate system
inertial coordinate system

hub coordinate system

%y Twe
Toxr oy
8, 6, &p
81c, C1s

Wy

Wih e

w¢y
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TABLE 1.

Air velocity,
Rotor

rotor coordinate system

blade angle of attack

rotor teeter deflection angle
pitch-flap coupling angle Eq. (A22)

critical damping ratios,
Ea. (Al3)

blade pitch, twist, collective
pitch, and cyclic pitch angles

air density

aerodynamic inflow angle

pylon rotational deflections

normalized blade mode shape
rotor position angle
blade natural freguency

blade out-of-plane bending
frequency

pylon frequency (=¢R¢X/I¢X )

HE (Bl

pylon freguency (=¢R¢y71¢y )

Tom

rotor rotational speed
time derivative
column matrix

sguare matrix

PARAMETERS FOR PROP-ROTOR OF REF. 6

v 77.1 m/s

Radial length, R 3.505 m
Rotational speed, 320 RPM
Pitch-flap coupling, 83 200 =
Teeter spring stiffness, 2Ky 0
Teeter motion damping,2 zg 0
Blade
Mass properties
My 26.09 kg
Mo, 16.96 kg-m?2
Sbl 42.17 kg-m2
Iy 118.9 kg-m2
Stiffness, (Kc+Ky) .3821x106 N-m/Tad
Damping, Cy 0
Airfoil NACA 0015
thord, ¢ L2794 m

Twist distrioution, 9¢(r)

0 <t/R £.45 .677-1.217r/R rad
45<r/R <1.0 .419(.75-r/R) rad
Collective pitch, 8g .74 rad
Pylon Properties
Inertias, Ip, = Ip 21,60 kg-m2
Stiffness, y -
Kox 29.71x102 N-m/rad
K 140.3x10% N-m/rad

¢y
Damping, Sy =C¢>y

Length, h

.04
1.143 m
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TABLE II. PARAMETERS FOR DOE/NASA MOD-2

HAWT
wind velocity, V 12.2 m/s
Rotor
radial length, R 45.81 m
Rgtatinal speed, 17.5 RPM
Pitch-flap coupling, &3 0
Tester spring stiffness, 2Ky 0
Jeeter motion damping, 2zy 0
Blade :
Mass properties
:% 26021, kg
2 .9125x106 kg-m2
Soy 3.368x106 kg-m?
stiffness, (Ko+Ky) 78.82x106 N-m/rad
. Dami,ng! §w D
Airfoil NACA 23018

nord distribution, c(r)
1542 < T/R < . 3455
L3455 <r/Rg1.0

Twist distribution,

.1542<r/R<.27

9 (r)
.03459-.155(.27-r/R) rad

.27<r/R<1.0 -.0698 + .143(1-r/R) rad
Zollective pitch, 6
- . 1542 < /R <,7006 (0]
7006 T/RS1.O -.05236 rad
Pylon '
~ Ingrtia,

6.115x106 N-m2
.6210x106 N-mZ

6.183x10% N-m/rad
3.140x10% N-m/rad

o
0
7.3152 m

APPENDIX
Derivation of Equation of Motion

Tne mathematical model of a horizontal axis wind
turtine is shown in Figure 2. The degrees of
freedom and the required coordinate systems are
described in the main body of this paper. The
eguaticns of motion, herein, have been derived by
using the Lagranglan approach. This formulation
requires expressions for the position vectors of
arbitrary peints on the pylon and the blades.

Tnese expressions are obtained with the aid of a
series of rotations. The order of the rotations,
illustrated in Figure 2, is ¢, dy, ¥, and v.

The position vector of a point on” the pylon axis is

S 0
= = [T, 1T, ©

s
P

(AL)

and that of the hub-pylon axis junction point 1s
0

= [T, ] [Te, 40
h

oh (A2)

207

3.319-8.429(.3455-v/R) m
1.436+2.877(1-r/R) m

where

1 0 0

{T¢x] =10 cos ¢x -sin ¢x
JJ sin d)x cos Cbx
£ 0 si (A3)
cos d)y ) sin d)y

[T4,y] = 0 1 0
Csin d)y 0 cos (by

The position vector of a point on blade 1 can be
written in the X3Y3Z3 axis system as

0
T, = [1,]1{ = (aa)
¥y (r,t)
where
cos Y -sin ¢ 07
[’rw] = lsin Yy cos ¥ 0
0 0 1
1 0 - s}
[TY] =10 cos Y =-siny
0 siny cosY

Combining Equations (A2) and (A4), the position
vector of a point on the axis of blade 1 expressed
in the XYZ axis system is

0 0
T = T T
e = [n 0 ) [qor + BIEK = bl o
h 71<r,t):
where w)(r,t) is represented by a single
elastic blade mode and is
(A7)

w (r,e) = ®(r)qwl(t)

The position vector of a point on the axis of
blade 2 is obtained from Equations (A&) by
replacing wy, v, and ¥ by wp, -Y, and Y+
respectively.

(R5)



The total kimetic energy of the pylon and the

rotor is formed from the position vectors given by

Equations (Al) and (A6) and is given by
-2
T = %{[%x + I, (1 - cos 29)] by

+ [I¢y + Ib(l - cos Zw)] ¢§

2

+ [-4sp,va, - 207 + 21, ]2

2

.2 .2 .
+ ZIbY + ZMb2 (qs + 9

) + 20,0.1, sin 2¢

+

4&>x9 [Sbl 9. sin ¢ + IbY sin \p] "8)

+

4¢xbe cos § + M’xqcsbl cos Y

locbyQ [Ibcbx + Sblqc cos ¥ + IbY cos w]

+

4¢y'Y Isin y + /4¢>ysb1qc sin ¢~

+

ASbl ch}
where

I¢x-I

b

2
Px+2Mh

- 2
Iy, = Tp, + 24h
- i m dr
“b _/;R b
R
I, = f mbrz dr
o}
sy = 1 $rd
b, -/(; m ¢ r dr

M -fR ¢2dr
by " Jo ™

qg = (q‘,,1 + qw2)/2

(A9)

9 = (auy = 9w,)/2

The quantities Ip, and Ip, are the pylon
inertias about the X and ¥ axes, respectively.

The potential energy of the pylon and the rotor
can be written as

1 2 2 2
v E[K‘”>r¢x Koty + Y (A10)

+ 2(1(w + Kc)(q§+q§)]

{1 -

where
R
KW = 4 Ebeyb¢"2(r)dr
K = _[R T Q'Z(r)dr
c ¢ (A1)

fR 2
= m
Tc A bQ r dr

The dissipation potential for the pylon and the
rotor can be written as

1 .2 «2 )
UD - 5[c¢x¢x + Cq)yd)y + 2Cb'Y
-2 -2
+ ch (qc + qs)]
C¢X = 2C¢x1¢xw¢x

Cp =2 I4 W
oy T o0y Toyey

" (Al2)

where

= (A13)
Cb ZCbIbu)Y

C = 200,

By substituting Equations (A8), (AlQ), and (Al2)
into Lagrangian equations of the form

a (ar\_oar, o, Mo,
dt \33q;) "3q, T 3q; T3q;, & (Al4)

the following equations of motion for the wind
turbine model are obtainmed

[1}{q} + [c]{a} + (K {a} = {a} (Al5)

where
+
. le - sz
fa} =< fof =¢ n
x My
Mi
¢>y ¢Y
m, 0 0 0 ]
0 2, 8p,y 25y, cos ¥ 5y, sin ¥
0 251,x 1, 21y cos ¥ 21, sin ¥
0 28y, cos ¥ 2T, cos ¥ on+1b(l + cos 2¥) Iy, sin 2¥
o 28\’1 sin ¢ 21, ein ¥ I ein 2¢ I" + Iy(l - cos 2y
(A16)
2, 0 0 1] * ]
o :, 0 4Ty sin @ 45y,R cos ¥
[eJ=}e o, -4TpR ein ¥ 43,0 cos ¥
(4 4 0 Cg - Myl sin 20 20,1 + cos 24)
[ 0 -2Ip0(1 - cos 2¢) cOy + ZIbﬂ sin 2y

2(K, + K) 0 0 0 [}

2 )

[ 2(Ry + &) 28y, , ]

x] - [ 25,02 2Ry + 2D 0 [}
0 2Sblﬂzcol ¢ ZIbﬂzcou 1 K‘x bl

] 2sppfatn ¥ e b 0 Ky

RN



The next step is to obtain expressions for

Quy, Qwo, s Moy, and Moy, The

expressions are derived from the virtual work of
the serodynamic forces, which can be written as

2 R
== S &W, =E -4- (FA . Sr)dr (A1)
B L n=1

5 - whete Fp is the aerodynamic force vector per
i urit length. The components of Fp are
illustrated in Figure 3 from which one can write

B -

r =do (A18)
o { A}blade 1
T

By using a similar expression for blade 2,
substituting it with Equations (A6) and (Al8) into

©  Equation (Al7), and neglecting several higher
order terms believed to be unimportant, one obtains

- ) R
9"’1-[ T,® dr

R
gyz = A T,® dr
R
= (Ty - T,)r dr
P,iy, 172 (A19)
; - :71i?x=-ﬂh sin P + Thy coslb+MYcosw
Agi o My = @h éoéA@ + Thy sin ¢ + sin ¢
o *
(A20)

The expressions for circulatory lift and profile
drag per unit length can be written as

1 2
= = pU"cC.
L=g et (@ (A21)

) --% pUchD(Q)

l

"
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where, from Figure 3 and Equation (A&), the
following expressions are obtained

Up = V cos $y cOs ¢y cos Y + rcbx cos ¥

+r¢y sin!b+r‘y+qw1¢+v .

UT = Y cos ¢x 8in ¢y cos Y - V gin ¢x sin ¥

+ h:px sin ¢ - hti»y cos Y+ rllcos ¥ (pooy

¢ -
-1

tan{=)
UT

Q
]

-
]

<
]

60 + Bt(r) - Y tan 53

+ 91c cos ¥ + Ols sin ¥
In the derivation of above expressions for Up

and Uy, several higner order terms, believed to
be unimportant, are neglected. Also, circulatory
lift, produced by the angular velocity of the

 local blade section about the yp-axis due to

blade out-of-plane bending and rotor teetering, is
neglected in the expression of Equation (AZ21).

The values of C_ and Cp are nonlinear

functions of x and are calculated from airfoil

- data.

By resolving L and D in Figure 3, the expressions
for T; and H) are

T1=—Lcos¢—Ds1n¢

o L (A23)
Hla—L sin ¢ + D cos ¢

The expressions for T, and Hp are the same but
the values of L, D, and are obtained by
replacing v, ¥, and 9w) by -v, V41, and

Qwy, respectively in the expressions of
Equation (AZ22).

The induced velocity v in Equation (A22) is based
on classical momentum theory and is

v+ Y2 + 21/pmR% (A24)

2

v o=

EURRTRTN]
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QUESTIONS AND ANSWERS

D.C. Janetzke

From: A. Wright

Q: What type of failures would result from severe whirl flutter?
A: Fatigue failure or ultimate limit load failure.

From: Bill Wentz

Q: How do you increase structural damping in design?

A: I don't know.

From: J.A. Kentfield

Q: What magnitude of structural damping can be expected in the pylon of MOD-2 or
similar machines?

A: The damping applied to the pylon in the model represents the equivalent damping of
the entire rotor support system which includes the pod and the tower. The Mod-2
welded tower damping ie about 2% of critical damping.

From: Mr. Doman

Q: what influence has the absence of tower bending modes on results?

Az The tower bending modes are represented by the pylon support etiffness.

From: P. Anderson

Q: What time step size was used in the integration process? Have any sensitivity tests
been carried out to optimize step size?

A: 1. An initial time step equal to 36 steps per rotor revelution was arbitrarily
chosen. The integration process could change the step size within the initial
size as needed for convergence.

2. Several other step sizes were used, but no attempt was made to optimize the
size.
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